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Accurate Numerical Evaluation of Distribution Functions
for Orthogonal and Symplectic Matrix Ensembles
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FREDHOLM DETERMINANTS VERSUS PAINLEVÉ TRANSCENDENTS

Two tools used in integrable systems

Ivar Fredholm (1866–1927)

determinant of integral operator (1899)

Ku(x) =
∫ b

a
K(x, y)u(y) dy

 

det(I + zK) =
∞

∑
n=0

zn

n!

∫
[a,b]n

n
det
i,j=1

K(ti , tj) dt

Paul Painlevé (1863–1933)

six families of irreducible transcendental functions (1895)

uxx = 6u2 + x

uxx = 2u3 + xu− α

uxx = u−1u2
x − x−1ux + x−1(αu2 + β) + γu3 + δu−1

uxx = · · ·
uxx = · · ·
uxx = · · ·
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EXAMPLE

n-th largest level in edge scaled GUE

P(exactly n levels in (s, ∞)) =
(−1)n

n!
∂n

∂zn F2(s; z)
∣∣∣∣
z=1

(Forrester ’93)

F2(s; z) = det
(

I − z KAi�L2(s,∞)

)
with kernel

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

(Tracy/Widom ’93)

F2(s; z) = exp
(
−
∫ ∞

s
(x− s)u(x; z)2 dx

)
with Painlevé II

uxx = 2u3 + xu

u(x; z) '
√

z Ai(x) (x → ∞)

Without the Painlevé representations, the numerical evaluation of the Fredholm determinants is
quite involved. — Tracy/Widom ’00
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SIMPLE NUMERICAL METHOD FOR FREDHOLM DETERMINANTS

m-point quadrature formula

∫ b

a
dt f (t) ≈

m

∑
k=1

wk f (xk)

The Idea (Hilbert 1904, B. ’10)

det(I + zK) Fredholm
=
1903

∞

∑
n=0

zn

n!

∫ b

a
dt1 · · ·

∫ b

a
dtn

n
det
i,j=1

K(ti, tj)

≈
∞

∑
n=0

zn

n!

m

∑
k1=1

wk1 · · ·
m

∑
kn=1

wkn

n
det
i,j=1

K(xki
, xkj

)

v. Koch
=
1892

det(I + zKm)

with the m×m-matrix

Km =
(

w1/2
i K(xi, xj)w

1/2
j

)m

i,j=1

FOCM ’11, RANDOM MATRIX THEORY FOLKMAR BORNEMANN 4



CONVERGENCE RATE OF THE QUADRATURE METHOD

Matlab-Code
[w,x] = QuadratureRule(a,b,m);
w = sqrt(w); [xi,xj] = ndgrid(x,x);
d = det(eye(m)+z*(w’*w).*K(xi,xj));

Theorem (B. ’10)

For quadrature formula of order ν with positive weights:

• if kernel is Ck−1,1([a, b]2),

error = O(ν−k) (ν→ ∞);

• if kernel is bounded analytic, there is ρ > 1 with

error = O(ρ−ν) (ν→ ∞).
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EXAMPLE

Tracy–Widom distribution

F2(s) = det
(

I − KAi�L2(s,∞)

)
, KAi(x, y) =

Ai(x)Ai′(y)−Ai′(x)Ai(y)
x− y
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Perturbation bound for m-dimensional determinants: (B. ’10)

round-off error 6
√

m ‖Km‖F · umachine
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HIGHER-ORDER GAP PROBABILITIES

n-th largest level in edge scaled GUE

P(exactly n levels in (s, ∞)) =
(−1)n

n!
∂n

∂zn det
(

I − zKAi�L2(s,∞)

)∣∣∣∣
z=1
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probability density of n-th largest level in edge scaled GUE

Numerical method

f (z) = det(I + zKAi) is entire of order 0

f (n)(z)
n!

=
1

2πrn

∫ 2π

0
e−inθ f (z + reiθ) dθ

• trapezoidal rule exponentially convergent

• numerical stability: judicious choice of r > 0

Example: (B. ’11)

f entire of order ρ > 0 and type τ > 0

ropt = (n/ρτ)1/ρ
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EXAMPLE

Generating functions of probabilities

• absolute error: r = 1 reasonable (Lyness/Sande ’71)

• relative error (= accurate tails):

ropt = argmin
r>0

r−n f (r)

unique solution of convex optimization problem (B. ’11)
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GENERALIZED SPACING FUNCTIONS

Combinatorial structure of determinantal processes

kernel K, disjoint intervals J1, . . . , JN , multi-index α ∈NN
0

P(exactly αj levels lie in Jj, j = 1, . . . , N)

=
(−1)|α|

α!
∂α

∂zα
det

I −

z1K · · · zNK
...

...

z1K · · · zNK

�L2(J1)⊕···⊕L2(JN)


∣∣∣∣∣∣∣
z1=···=zN=1

Examples

• joint pdfs

• pdfs of sums, products, etc.
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Probability distribution of the sum of the largest two levels in edge scaled GUE

cdf of the sum of largest two levels in GUE
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MATRIX KERNEL DETERMINANTS

systems of integral operators = integral operator on coproduct

K =


K11 · · · K1N

...
...

KN1 · · · KNN

 on
N⊕

k=1

L2(Ik) with matrix kernel Kij(x, y)

representable as a single integral operator on

L2

(
N

ä
k=1

Ik

)
∼=

N⊕
k=1

L2(Ik),
N

ä
k=1

Ik =
N⋃

k=1

Ik × {k},

with scalar kernel (Fredholm 1903)

K(x, y) =
N

∑
i,j=1

1Ii (x)Kij(x, y)1Ij(y)

 straightforward extension of the quadrature method
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MATRIX KERNEL DETERMINANT FOR GSE

n-th largest level in edge scaled GSE

P(exactly n levels lie in (s, ∞)) = E4(n; s) =
(−1)n

n!
∂n

∂zn F4(s; z)
∣∣∣∣
z=1

(Forrester/Nagao/Honner ’99, Tracy/Widom ’05)

F4(s; z) = det

I − z
2

 S(x, y) SD(x, y)

IS(x, y) S(y, x)

�L2(s,∞)⊕L2(s,∞)

1/2

S(x, y) = KAi(x, y)− 1
2 Ai(x)

∫ ∞

y
Ai(η) dη

SD(x, y) = −∂yKAi(x, y)− 1
2 Ai(x)Ai(y)

IS(x, y) = −
∫ ∞

x
KAi(ξ, y) dξ + 1

2

∫ ∞

x
Ai(ξ) dξ

∫ ∞

y
Ai(η) dη

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
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EXPERIMENTAL MATHEMATICS

factorization

KAi(x, y) =
∫ ∞

0
K(x, ξ)K(ξ, y) dξ, K(x, y) = Ai(x + y),

yields

F2(s; z) = F+(s; z) · F−(s; z), F±(s; z) = det
(

I ∓
√

z K�L2(s/2,∞)

)
and (Ferrari/Spohn ’05)

F4(s; 1) = 1
2 (F+(s; 1) + F−(s; 1))

A new formula (B. ’10)

How about, in general, F4(s; z) = 1
2 (F+(s; z) + F−(s; z)) ?

• first, numerical tests with random s and z indicated the formula to be true

• later, proof via Painlevé II representation (B. ’10, Forrester ’06)
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MATRIX KERNEL DETERMINANT FOR GOE

n-th largest level in edge scaled GOE

P(exactly n levels lie in (s, ∞)) = E1(n; s) =
(−1)n

n!
∂n

∂zn F1(s; z)
∣∣∣∣
z=1

(Forrester/Nagao/Honner ’99, Tracy/Widom ’05)

F1(s; z) = det

I − z

 S(x, y) SD(x, y)

IS(x, y) S(y, x)

�X1(s,∞)⊕X2(s,∞)

1/2

S(x, y) = KAi(x, y) + 1
2

(
1− 1

2 Ai(x)
∫ ∞

y
Ai(η) dη

)
SD(x, y) = −∂yKAi(x, y)− 1

2 Ai(x)Ai(y)

IS(x, y) = − 1
2 sgn(x− y)−

∫ ∞

x
KAi(ξ, y) dξ + 1

2

(∫ x

y
Ai(ξ) dξ +

∫ ∞

x
Ai(ξ) dξ

∫ ∞

y
Ai(η) dη

)

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

Hilbert–Schmidt operator with trace class diagonal Hilbert–Carleman determinant
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A RECURSIVE APPROACH TO EDGE-SCALED GOE I

superposition/decimation relations (Forrester/Rains ’01)

GSEm = even(GOE2m+1), GUEm = even(GOEm ∪GOEm+1)

combinatorical implications

• F4(n; s) = F1(2n; s)

• E2(n; s) = ∑2n
j=0 E1(j; s)E1(2n− j; s) + ∑2n+1

j=0 E1(j; s)E1(2n + 1− j; s)

other relations

• E2(n; s) = ∑n
j=0 E+(j; s)E−(n− j; s)

• E4(n; s) = 1
2 (E+(n; s) + E−(n; s))

• E1(0; s) = E+(0; s) (Ferrari/Spohn ’05)
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A RECURSIVE APPROACH TO EDGE-SCALED GOE II

generating functions

f0(x) =
∞

∑
n=0

E1(2n; s)x2n

f1(x) =
∞

∑
n=0

E1(2n + 1; s)x2n+1

g±(x) =
∞

∑
n=0

E±(n; s)x2n = F±(1− x2; s)

equations

f0(x)2 + 2 f0(x) f1(x) + x2 f1(x)2 = g+(x) · g−(x)

f0(x) + f1(x) =
1
2
(g+(x) + g−(x))

f0(0) = g+(0)
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A RECURSIVE APPROACH TO EDGE-SCALED GOE III

solution

f0(x) = g+(x)− (1−
√

1− x2) f0(x)

f1(x) =
1
2
(g+(x) + g−(x))− f0(x)

transforms with

1−
√

1− x2 =
∞

∑
k=0

(2k
k )

22k+1(k + 1)
x2k+2

into the recursion

E1(2n; s) = E+(n; s)−
n−1

∑
k=0

(2k
k )E1(2n− 2k− 1; s)

22k+1(k + 1)

E1(2n + 1; s) =
E+(n; s) + E−(n; s)

2
− E1(2n; s)
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A BEAUTIFUL FORMULA

A reformulation of the GOE recursion
(B. ’10, Forrester ’06)

F1(s; z) =
∞

∑
n=0

E1(n; s)(1− z)n

=
1
2 ∑
±

(
1±

√
z

2− z

)
det

(
I ∓

√
z(2− z)K�L2(s/2,∞)

)

with K(x, y) = Ai(x + y)

• amenable to exponential convergence in the quadrature method

• branch-cut singularities at z = 0 and z = 2
 derivatives not along circles (new: automatic contours B./Wechslberger ’11)

similar structure for

• bulk scaling limits

• hard-edge scaling limits (LOE/LUE/LSE)
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APPLICATIONS

an e-mail from a geneticist @ Broad Institute (MIT/Harvard)
I’m ... interested in the distribution of eigenvalues of very large (mostly
Wishart) matrices. I recently found you ArXiv paper. A tremendous amount of
information. ... Some things I would like: A table of the mean of F1(k,s) for
as large k as is practical. I’d certainly like to get this for k = 1, ..., 50.

mean and variance of the k-largest level in edge-scaled GOE by using the recursion
1 -1.2065335745 1.6077810345
2 -3.2624279028 1.0354474415
3 -4.8216302757 0.8223901151
4 -6.1620399636 0.7031581054
5 -7.3701147042 0.6242523679
6 -8.4862183723 0.5670071487
7 -9.5331810321 0.5229902526
. . .
. . .
. . .

38 -31.3497235299 0.2159078706
39 -31.9083474476 0.2129575824
40 -32.4621235403 0.2101204063
41 -33.011211545_ 0.207380416_
42 -33.5557807___ 0.2047596___
43 -34.09586_____ 0.20201_____
44 -34.631_______ 0.198_______
45 -35.14________ 0.18________
46 -35.5_________ 0.1_________
47 -3_.__________ 0.__________
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SOFTWARE

RMFredholmToolbox for Matlab (B. ’10)

function command

E(n)2 (k; J) E(2,k,J,n)

E(n)2 ((k, 0); J1, J2) E(2,[k,0],{J1,J2},n)

E(bulk)
2 (k; J) E(2,k,J,’bulk’)

E(bulk)
2 ((k, 0); J1, J2) E(2,[k,0],{J1,J2},’bulk’)

E(soft)
2 (k; J) E(2,k,J,’soft’)

E(soft)
2 ((k, 0); J1, J2) E(2,[k,0],{J1,J2},’soft’)

F(x, y) F2Joint(x,y)

E(soft)
4 (k; J) E(4,k,J,’soft’,’MatrixKernel’)

E(n)LUE(k; J, α) E(’LUE’,k,J,n,alpha)

E(n)LUE((k, 0); J1, J2, α) E(’LUE’,[k,0],{J1,J2},n,alpha)

E(hard)
2 (k; J, α) E(2,k,J,’hard’,alpha)

E(hard)
2 ((k, 0); J1, J2, α) E(2,[k,0],{J1,J2},’hard’,alpha)

function command

E(hard)
2 ((k, 0); J1, J2, α) E(2,[k,0],{J1,J2},’hard’,alpha)

E+(k; s) E(’+’,k,s)

E− (k; s) E(’-’,k,s)

Eβ (k; s) E(beta,k,s)

Ẽ+(k; s) E(’+’,k,s,’soft’)

Ẽ− (k; s) E(’-’,k,s,’soft’)

Ẽβ (k; s) E(beta,k,s,’soft’)

Fβ (k; s) F(beta,k,s)

Fβ (s) F(beta,s)

E+,α (k; s) E(’+’,k,s,’hard’,alpha)

E−,α (k; s) E(’-’,k,s,’hard’,alpha)

Eβ,α (k; s) E(beta,k,s,’hard’,alpha)

Fβ,α (k; s) F(beta,k,s,alpha)

send e-mail to: bornemann@tum.de
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