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Accurate Numerical Evaluation of Distribution Functions
for Orthogonal and Symplectic Matrix Ensembles
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FREDHOLM DETERMINANTS VERSUS PAINLEVE TRANSCENDENTS

Two tools used in integrable systems

Ivar Fredholm (1866—1927) Paul Painlévé (1863—-1933)
determinant of integral operator (1899) six families of irreducible transcendental functions (1895)
b Uy = 6U* + X
Ku(x) = [ K(xy)u(y)dy "
! Uy = 2U° + XU — &
~ Upe = U 02 — x Yuy + X7 (ocu2+[3)+7u3+(5u_1
Uyx =
det(I + zK / det K(;, 1) dt _
( )= n= 0 n! Japn ij= itj) Hax



EXAMPLE

n-th largest level in edge scaled GUE

. (_1)n an
IP(exactly n levels in (s,00)) = F(s;z)
n! oz o1
(Forrester ’93) (Tracy/Widom ’93)
Fy(s;z) = det (1 —zKaj fL2(s,oo)> Fy(s;z) = exp (— / (x —s)u(x;z)? dx)
S

with kernel with Painlevé Il

Ai(x) Ai' (y) — Ai' (x) Ai(y)

Kai(x,y) = Uy = 217 + xu

X—Yy
u(x;z) ~ v/zAi(x) (x — o0)

Without the Painlevé representations, the numerical evaluation of the Fredholm determinants is
quite involved. — Tracy/Widom ’00



SIMPLE NUMERICAL METHOD FOR FREDHOLM DETERMINANTS

m=-point quadrature formula

/ dt f(t) Zwkf Xk)

The ldea (Hilbert 1904, B.’10)

0 1N
det(I +zK) =" a dt1 dtn det K(t;t))
1903 n! _
n=0 """ Lj=
o0 Zﬂ m m n
~ Z ] Z Wi, * -+ Z Wy ngtl K(xk , Xk )
n=0 ) k1:1 kn: =
‘=" det(I + zKy,)

1892

with the m X m-matrix

m
Kim :( 1/2K(xz/ ])w}/2>']'1



CONVERGENCE RATE OF THE QUADRATURE METHOD

Matlab-Code

[w,x] = QuadratureRule(a,b,m);
w = sqrt(w); [xi,xj] = ndgrid(x,x);
d = det(eye(m)+z*(w’*w) . *K(xi,xj));

Theorem @.'10)
For quadrature formula of order v with positive weights:

o if kernel is C*~11([a, b]?),
error = O(vF) (v — o0);
o if kernel is bounded analytic, there is p > 1 with

error = O(p™ ") (v — 00).



EXAMPLE m

Tracy—-Widom distribution

Ai(x) Ai'(y) — A’ (x) Ai(y)
X —y

Fy(s) = det (1 — Kai fLZ(s,oo)> , Kailx,y) =
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dimension

dots: Gauss—Legendre, circles: Clenshaw—Curtis
Perturbation bound for m-dimensional determinants: (B.’10)

round-off error < v/m || K || F * Umachine



HIGHER-ORDER GAP PROBABILITIES m

n-th largest level in edge scaled GUE

(1) &
n! dz"

IP(exactly n levels in (s,00)) = det (I — zKj fLZ(s,oo)>

z=1

Numerical method

08— ‘ ‘ ‘ ‘ ‘ ‘ f(z) = det(I 4+ zKa;) is entire of order 0

£ (z) 1 /02” e F(2 + rei®) do

n!'  2mam

e trapezoidal rule exponentially convergent
e numerical stability: judicious choice of r > 0

Example: (B.’11)
f entire of order p > 0 and type T > 0

-10 -8 -6 -4 -2 0 2
S

robability density of n-th largest level in edge scaled GUE _ 1/
P y y g g Topt = (n/pT) p




EXAMPLE

Generating functions of probabilities
e absolute error: ¥ = 1 reasonable (Lyness/Sande '71)

e relative error (= accurate tails):

ropt = argminr™ " f(r)
r>0

unique solution of convex optimization problem (B.11)
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GENERALIZED SPACING FUNCTIONS

Combinatorial structure of determinantal processes

kernel K, disjoint intervals [, ..., Jn, multi-index & € ]Né\]

IP(exactly «; levels liein J;,,7=1,...,N
Y X i ]

K
(-1 o !
= det | [ —
w!  Jz*
ZlK
Examples
e joint pdfs

e pdfs of sums, products, etc.

ZNK

1201 @L2(Jy)

ZNK

cdf of the sum of largest two levels in GUE
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MATRIX KERNEL DETERMINANTS

systems of integral operators = integral operator on coproduct
(Kn o Ky \ N
K=1] : : on L%(I;) with matrix kernel Kij(x,y)
\KNl o KNN)

representable as a single integral operator on

N N N
2 <H Ik) = DL, [ 2= U L x {k},
k=1 k=1 k=1

with scalar kernel (Fredholm 1903)

Z 1y, (x Kij (x, y)ﬂl (v)
1,j=1

~~ straightforward extension of the quadrature method



MATRIX KERNEL DETERMINANT FOR GSE

n-th largest level in edge scaled GSE

IP (exactly 7 levels lie in (s,00)) = E4(n;s) =

(Forrester/Nagao/Honner ’99, Tracy/Widom ’05)

1/2
S(x,y) SD(x,y)
F4(S,'Z) = det (I — % ( rL2(s,oo)@L2(s,oo)
IS(x,y)  S(y,x)

S(x,y) = Kai(x,y) — 5 Ai(x) /y ) Ai(n) dn
SD(x,y) = —9,Kai(x,y) — % Ai(x) Ai(y)

IS(x,y) = —/

X

CKu(Gydg [ ai@ds | aitn)dy

Ai(x) Ai' (y) — AP’ (x) Ai(y)
x—y

Kai(x,y) =



EXPERIMENTAL MATHEMATICS

factorization

memwzﬂwK@£ﬂqéwdé K(x,y) = Ai(x +y),

yields
Fy(s;z) = F+(s;z) - F_(s;2), Fi(s;z) = det (I F \/EKFL2(5/2,oo)>
and (Ferrari/Spohn ’05)

Fy(s;1) = 5(Fi(s;1) + F—(s;1))

A new formula 8.'10)

How about, in general,| Fy(s;z) = 4(F4(s;2) + F_(s;2)) |?

e first, numerical tests with random s and z indicated the formula to be true

e [ater, proof via Painlevé Il representation (B.’10, Forrester '06)



MATRIX KERNEL DETERMINANT FOR GOE m

n-th largest level in edge scaled GOE

(-1 &

IP (exactly 7 levels lie in (s,00)) = E1(n;s) = 1 9

Fi(s;z)

(Forrester/Nagao/Honner ’99, Tracy/Widom ’05)

1/2
S(x,y) SD(x,y)
Fi(s;z) = det (I —Z ( er (5,00)B X7 (s,00)
IS(x,y)  S(y,x)

S(x,y) = Kai(x,y) + 3 (1 — 3 Ai(x) /yoo Ai(1) d’?)

SD(x,y) = —9,Kai(x,y) — 3 Ai(x) Ai(y)

o0

IS(x,y) = —ysgn(x—y) - [

xoo Kai (& y)dE + 3 (/yxAi(g) dg + /xoo Ai(g) dg /y
Ai(x) Ai'(y) — Ai'(x) Ai(y)
-y

Hilbert—Schmidt operator with trace class diagonal ~~ Hilbert—Carleman determinant

Ai(n) d’?)

Kai(x,y) =



A RECURSIVE APPROACH TO EDGE-SCALED GOE |

superposition/decimation relations (Forrester/Rains '01)

GSE,;;, = even(GOEy;,; 1), GUE,, = even(GOE,, UGOE,, ;1)
combinatorical implications
e Fy(n;s) = F(2n;s)
o Ex(n;s) = L7 E1(j;s)E1(2n — j;s) + 2]2131 E1(j;s)E1(2n+1 — j;s)
other relations
o Ex(ns) = K)o B4 (jis)E—(n— jis)
o Ey(n;s) = 5 (E4(n;8) + E_(m;3))

e F1(0;s) = E4+(0;s) (Ferrari/Spohn '05)



A RECURSIVE APPROACH TO EDGE-ScALED GOE I

generating functions

equations



A RECURSIVE APPROACH TO EDGE-SCALED GOE IlI

solution

folx) = g+ (x) = (1= V1—x%)fo(x)

filx) = 5 (4 (1) + 8- (x)) ~ fol)

transforms with

00 2k
,2‘622"“0(%—1)

into the recursion

nl (B9E (20 — 2k — 1;5)

E1(2n;s) = EL(n;s) —
1( ) -|—( ) kgo 22k+1(k_|_1)

Ei(n;s)+ E_(n;s)
2

Ei(2n+1;s) = — E1(2n;5s)



A BEAUTIFUL FORMULA

A reformulation of the GOE recursion
(B.’10, Forrester ’06)

Fi(s;z) = i Ei(n;5)(1 —z)"

=0
1

= ; (1 /5 ) det (Iq: /22 —Z)KTL-?(s/z,oo))

with K(x,y) = Ai(x +vy)

S

e amenable to exponential convergence in the quadrature method

e branch-cut singularities at z = 0 and z = 2
~~ derivatives not anng circles (new: automatic contours B./Wechslberger 'I 1)

similar structure for

e bulk scaling limits

e hard-edge scaling limits (LOE/LUE/LSE)



APPLICATIONS

an e-mail from a geneticist @ Broad Institute (MIT/Harvard)

I’m ... interested in the distribution of eigenvalues of very large (mostly
Wishart) matrices. I recently found you ArXiv paper. A tremendous amount of
information. ... Some things I would like: A table of the mean of F1(k,s) for
as large k as is practical. 1I’d certainly like to get this for k = 1, ..., 50.

mean and variance of the k-largest level in edge-scaled GOE by using the recursion

N O O W N

38
39
40
41
42
43
44
45
46
47

-1.2065335745 1.6077810345
-3.2624279028 1.0354474415
-4.8216302757 0.8223901151
-6.1620399636 0.7031581054
-7.3701147042 0.6242523679
-8.4862183723 0.5670071487
-9.5331810321 0.5229902526
-31.3497235299 0.2159078706
-31.9083474476 0.2129575824
-32.4621235403 0.2101204063
-33.011211545_ 0.207380416_
-33.5557807___ 0.2047596___
-34.09586_____ 0.20201_____
-34.631_______ 0.198_______
-35.14________ 0.18________
-35.65_________ 0.1_________
-3 0



SOFTWARE

RMFredholmToolbox for Matlab 8. 10)

function command function command
S (k1) E(2,k,7,0) E D ((,0): 11, Jp0) B2, [8,00,491,J2), *hard? , alpha)
Eé”)((k,O);]l,Iz) E(2, [k,0],{J1,J2},n) E (k;s) EC+,k,s)
Eébulk)(k;]) E(2.k,J, bulk’) E_(k;s) EC’-’,k,s)
Eébulk)«klo);]l,h) E(2, [k,0],{J1,J2}, "bulk’) EIB(k,‘s) E(beta,k,s)
Ey (ks EC’+’,k,s, *soft?)

E§SO&)(’<;]) E(2,k,J, ’soft?) + (ki) 580

(soft) E_(k;s) E(C’-’,k,s,’soft?)
E; ((k,0);]1,J2) E(2,[k,0],{J1,J2}, soft?) ~

E‘B(k,‘s) E(beta,k,s, ’soft?)
F(x,y) F2Joint (x,y)
; FIB(k,'S) F(beta,k,s)

EL(LSO t (k1) E(4,k,J,’soft’, ’MatrixKernel’)

(n) F:B (s) F(beta,s)

n 3 )
ELuE(k,],OC) E(C°LUE ,k,J,n,alPha) E_}_,a(k}S) E(’+’,k,s,’hard’,a1pha)

(n) . LUE>
ELUE(U(/O)/]l/]Z/“) E(’LUE ,[k,o],{Jl,J2},n,a1Pha) E*,Dé(k;s) E(’—’,k,s,’hard’,alpha)

hard
Eg_ )(k?]/“) E(2,k,J,hard’ ,,alpha) E,B,lx(k"S) E(beta,k,s, ’hard’,alpha)
Eéhard) ((k,0; 11, ], ) E(2, [k,01,{J1,J2}, hard’,alpha) F,B,Dé (k;s) F(beta,k,s,alpha)

send e-mail to:

bornemann@tum.de
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